arc是什么意思 三角函数公式arc什么意思

考试内容:

角的概念的推广.弧度制.

任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.

两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

正弦定理.余弦定理.斜三角形解法.

考试要求:

(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.

(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.

(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx表示.

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα•cosα=1”.

三角函数 知识要点

1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{β|β=k*360°+α,k∈Z}

②终边在x轴上的角的集合: {β|β=k*180°,k∈Z}

③终边在y轴上的角的集合:{β|β=k*180°+90°,k∈Z}

④终边在坐标轴上的角的集合: {β|β=k*90°,k∈Z}

⑤终边在y=x轴上的角的集合:{β|β=k*180°+45°,k∈Z}

⑥终边在轴上y=-x轴上的角的集合:{β|β=k*180°-45°,k∈Z}

⑦若角α与角β的终边关于x轴对称,则角α与角β的关系:α=360°k-β

⑧若角α与角β的终边关于y轴对称,则角α与角β的关系:α=360°k+180°-β

⑨若角α与角β的终边在一条直线上,则角α与角β的关系:α=180°k+β

⑩角α与角β的终边互相垂直,则角α与角β的关系:α=360°k+β±90°

2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′

注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.

、弧度与角度互换公式: 1rad=180°/π≈57.30°=57°18ˊ. 1°=π/180ι≈0.01745(rad)

3、弧长公式:ι=|α|·r. 扇形面积公式:s扇形=1/2lr=1/2|α|·r²

4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则sinα=y/r ; cosα=x/r ;tanα=y/x ; cotα=x/y ;secα=r/y ;. .

5、三角函数在各象限的符号:(一全二正弦,三切四余弦)

6、三角函数线

正弦线:MP; 余弦线:OM; 正切线: AT.

7. 三角函数的定义域:

8、同角三角函数的基本关系式:sinα/cosα=tanα cosα/sinα=cotα

tan²α+cot²α=1 secα·sinα=1 secα·cosα=1

sin²α+cos²α=1 sec²α-tan²α=1 csc²α-cot²α=1

9、诱导公式:

“奇变偶不变,符号看象限”

三角函数的公式:(一)基本关系

公式组二

公式组三

公式组四

公式组五

公式组六

(二)角与角之间的互换

公式组一

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαsinβ+sinαcosβ

sin(α+β )=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanαranβ)

公式组二

sin2α=2sinαcosα

cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α

tan2α=2tanα/(1-tan²α)

sinα/2=±√cosα/2

cosα/2=±√(1+cosα)/2

tanα/2=±√√(1-cosα)/(1+cosα)=sinα/(1+cosα)=(1-cosα)/sinα

公式组三

sinα=(2tan²α/2)/(1+tan²α/2)

cosα=(1-tan²α/2)/(1+tan²α/2)

tanα=(2tanα/2)/(1-tan²α/2)

公式组四

sinαcosβ=1/2[sin(α+β)+sin(α-β)]

cosαsinβ=1/2[sin(α+β)-sin(α-β)]

cosαsinβ=1/2[cos(α+β)+cos(α-β)]

sinαsinβ=-1/2[cos(α+β)-cos(α-β)]

sinα+sinβ=2sin[(α+β)/2]cos(α-β)/2

sinα-sinβ=2cos[(α+β)/2]sin(α-β)/2

cosα+cosβ=2cos[(α+β)/2]cos(α-β)/2

cosα-cosβ=-2sin[(α+β)/2]sin(α-β)/2

公式组五

cos(1/2π-α)=sinα

sin(1/2π-α)=cosα

tan(1/2π-α)=cotα

cos(1/2π+α)=-sinα

tan(1/2π+α)=-cotα

sin(1/2π+α)=cosα

sin15°=cos75°=(√6-√2)/4,sin75°=cos15°=√6+√2)/4,tan15°=cot75°=2-√3,tan75°=cot15°=2+√3

10. 正弦、余弦、正切、余切函数的图象的性质:

注意:①y=-sinx与y=sinx的单调性正好相反;y=-cosx与y=cosx的单调性也同样相反.一般地,若y=f(x)在[a,b]上递增(减),则y=-f(x)在[a.b]上递减(增).

②y=|sinx|与y=|cosx|的周期是π.

③y=sin(ωx+φ)或y=cos(ωx+φ)(ω≠0)的周期T=2π/|ω|.

y=|tanx/2|的周期为2π(T=π/|ω|=>T=2π,如图,翻折无效).

④y=sin(ωx+φ)的对称轴方程是x=kπ+π/2(k∈Z),对称中心(kπ,0);y=cos(ωx+φ)的对称轴方程是x=kπ(k∈Z),对称中心(kπ+1/2π,0);y=tan(ωx+φ)的对称中心(kπ/2,0).y=cos2x→原点对称→y=-cos(-2x)=-cos2x

⑤当tanα·tanβ=1,α+β=kπ+π/2(k∈Z);tanα·tanβ=-1·α-β=kπ+π/2(k∈Z).

⑥y=cosx与y=sin(x+π/2+2kπ)是同一函数,而是偶函数,则y=(ωx+φ)=sin(ωx+kπ+1/2π)=±cos(ωx).

⑦函数y=tanx在R上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,y=tanx为增函数,同样也是错误的].

⑧定义域关于原点对称是f(x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f(-x)=f(x)*,奇函数:f(-x)=-f(x)

奇偶性的单调性:奇同偶反. 例如:ttanx是奇函数,y=tan(x+1/3π)是非奇非偶.(定义域不关于原点对称)

奇函数特有性质:若0∈x的定义域,则f(x)一定有f(0)=0.(0不属于x的定义域,则无此性质)

⑨y=sin|x|不是周期函数;y=|sinx|为周期函数(T=π);

y=cos|x|是周期函数(如图);y=|cosx|为周期函数(T=π);

y=|cos2x+1/2|的周期为π(如图),并非所有周期函数都有最小正周期,例如:y=f(x)=5=f(x+k),k∈R .

⑩ y=αcosα+bsinβ=√(a²+b²)*sin(α+β)+cosβ=b/a有√(a²+b²)≧|y|.

11、三角函数图象的作法:

1)、几何法:

2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).

3)、利用图象变换作三角函数图象.

三角函数的图象变换有振幅变换、周期变换和相位变换等.

函数y=Asin(ωx+φ)的振幅|A|,周期T=2π/|ω|,频率f=1/T=|ω|/2π,相位ωx+φ;初相φ(即当x=0时的相位).(当A>0,ω>0 时以上公式可去绝对值符号),

由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的倍,得到y=sinω x的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用ωx替换x)

由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

4、反三角函数:

函数y=sinx,(x∈[-π/2,π/2])的反函数叫做反正弦函数,记作y=arcsinx,它的定义域是[-1,1],值域是[-π/2,π/2].

函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π].

函数y=tanx,(x∈[-π/2,π/2])的反函数叫做反正切函数,记作y=arctanx,它的定义域是(-∞,+∞),值域是(-π/2,π/2).

函数y=ctgx,[x∈(0,π)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(-∞,+∞),值域是(0,π).

高三数学补习班:「链接」

【版权声明】汽车时代网提醒您:请在浏览本网站关于《arc是什么意思 三角函数公式arc什么意思》信息时,请您务必阅读并理解本声明。本站部分内容以及图片来源于商家投稿和网络转载,如网站发布的有关的信息侵犯到您的权益,请及时与我们取得联系,邮箱:chief-editor#autotimes.com.cn,我们会尊重您的决定并当天作出删除处理。

(0)

相关推荐

  • 双轨制是什么意思 取消退休金双轨制最新消息

    双轨制是什么意思 取消退休金双轨制最新消息退休金双轨制终结,它主要指的就是在2014年10月份开始,机关事业单位人员也开始缴纳基本养老保险,可以从这一方面来理解退休金双轨制的终结,实际上退休金双轨制虽然说取消了机关事业单位的这个退休金的计算

    2022年3月2日
    590
  • 提拉米苏是什么 提拉米苏每一层是什么

    提拉米苏是什么 提拉米苏每一层是什么提拉米苏,英文是Tiramisu,是一种带咖啡酒味儿的意大利甜点。以马斯卡彭芝士作为主要材料,带些酒味的甜点更加有风味,此配方用的是椰子味的朗姆酒更有异国情调。By Musha_穆夏用料马斯卡彭 250克

    2022年8月21日
    41
  • 大咖是什么意思 大咖和大佬的区别

    大咖是什么意思 大咖和大佬的区别这里是刘小顺的不正经旅行和生活研究所。随着互联网的飞速发展,自媒体的队伍也正在日益壮大,成为一支越来越不可忽视的重要媒体力量。现在,不管是发布会还是新闻见面会,不管是活动方还是品牌方,但凡需要邀请媒体到场,除

    2022年3月27日
    528
  • 农村加工厂创业项目 大量订单急需加工厂

    农村加工厂创业项目 大量订单急需加工厂创业开一家小型的加工厂是一个非常不错的选择,我小编在之前分享过一些开加工厂的创业项目,但是今天有网友问我有没有一种那种只负责在家闷头生产,不愁销路的小型加工厂而且年入百万,小编为各位网友分享农村不愁销路

    2022年4月3日
    1.0K
  • 甜瓜有哪些 各种甜瓜的图片及名称

    甜瓜有哪些 各种甜瓜的图片及名称让我们颇有幸福感的甜瓜其实是黄瓜属的成员,如果细品的话,甜瓜与黄瓜的风味儿确是有几分相似。甜瓜有个统一的身份识别标志,那就是切开果子之后,可以看到一条一条的挂满种子的胎座。今天,甜瓜已经是一个遍布欧亚大陆和非

    2022年9月4日
    20